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The Wigner-function approach is used to describe the Zener transition between the conduction and the
valence band in a semiconductor. In the Weyl quantization framework a diagonalization procedure is applied to
the multiband k · p Hamiltonian and a new set of Wigner multiband functions is defined. An approximate
closed-form solution is obtained by an iterative procedure which exploits the different time scales on which the
intraband and interband dynamical variables evolve. The single-band limit has been discussed and some
quantum corrections to the single-band trajectory have been obtained.
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I. INTRODUCTION

The theoretical analysis of current-voltage characteristics
in semiconductor devices requires the study of the electronic
motion in a general spatially dependent electric and magnetic
field. The usual single-band transport approximation or the
classical phase-space description of the charge motion is not
always accurate to model the highly integrated nanometric
semiconductor devices. In particular, in recent years there
has been a growing interest for interband devices where tun-
neling effects become the main transport phenomena. A the-
oretical study of these structures require multiband models
able to account for tunneling mechanisms between different
bands induced by the heterostructure design and the applied
external bias.1 Different approaches based on the density ma-
trix, nonequilibrium Green’s functions, and the Wigner func-
tion have been proposed to achieve a full quantum descrip-
tion of electron transport which includes the interaction
among the different bands.2

Among them, the Wigner-function formalism is the one
that bears the closest similarities to the classical Boltzmann
equation, which suggests the possibility of using this formal-
ism in order to obtain quantum corrections to the classical
phase-space motion. A phase-space approach may appear
more intuitive compared with the more abstract density ma-
trix and Green’s function formalism. A multiband transport
model, based on the Wigner-function approach, was intro-
duced in Ref. 3 where a suitable projection procedure in a
Bloch basis was proposed. In Ref. 4 a multiband equation of
motion was derived by using the generalized Kadanoff-
Baym nonequilibrium Green’s function formalism, but the
model equations derived there were still too hard to solve
numerically. An important approximation was then intro-
duced in Ref. 5, where the multiband Kane matrix6 and the
Luttinger-Kohn matrix7 were considered. A multiband enve-
lope function �MEF� model, based on the k · p Hamiltonian
and which describes the Zener effect in the Schrödinger
function formalism, was formulated in Refs. 8 and 9 and
then extended to the Wigner-function approach �W-MEF� in
Ref. 10. The W-MEF model consists of a system of evolution
equations for the components of the multiband Wigner func-
tion. This system describes the full quantum coupling be-
tween the conduction and the valence bands and involve both

the fast dynamical processes arising from the interband tran-
sition phenomena �and whose frequency is of the order of the
energy gap� and the slow dynamical processes arising from
the intraband motion of the electrons. This two-time-scale
behavior was exploited in Ref. 11 in order to devise an ap-
proximation scheme to obtain a closed-form asymptotic so-
lution of the multiband Wigner-function model equations.
The interband tunneling mechanism was treated as a scatter-
inglike process which takes place when the momentum of
the particle vanishes. The approximation procedure was re-
stricted to a semiconductor structure subject to a uniform-in-
space external electric field. In this work, we extend the pre-
vious results to the more realistic situation of a spatially
varying electric field. Our procedure reveals the existence of
an interesting regime of the electric field where the multi-
band quantum coupling between the conduction and valence
bands affects the motion of the particles at the zero order in
� �i.e., at the semiclassical level�. In this regime, the dynam-
ics of the single-band projection of the Wigner multiband
function is governed by a quantum-corrected Hamiltonian
and the correction terms depend on the Kane momentum,
which, in the k · p formalism, measures the strength of the
coupling between the valence and the conduction bands.6,12

This paper is organized as follow: in Sec. II we summa-
rize the standard approximations used to reproduce the elec-
tronic interband tunneling mediated by scattering. In Sec. III
we present the multiband kinetic model W-MEF, obtained by
a diagonalization procedure of the k · p Hamiltonian in the
multiband Weyl-Wigner formulation. In Sec. IV, we discuss
the single-band limit of the W-MEF system and propose an
iterative procedure to obtain an approximate closed-form so-
lution. This approach allows us to treat the interband Zener
tunneling process in the same way as the other scattering
processes that occur in the semiconductor.

II. MULTIBAND TRANSITIONS

An electron in a semiconductor structure can perform a
band transition essentially by two different mechanisms: ei-
ther absorbing �or releasing� a quantum of energy repre-
sented by a photon or phonon �collisional or incoherent tran-
sition� or by a tunneling process induced by an external field
�Hamiltonian or coherent transition�. In a collisional transi-
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tion, the dynamics of the particle is usually described as a
coherent intraband motion randomly interrupted by scatter-
ing phenomena which modify abruptly the Hamiltonian tra-
jectory of the particle. The treatment of the scattering pro-
cesses is thus essentially classical and quantum mechanics is
only used to evaluate the kernel of the scattering operator.
The free evolution of a quantum statistical system defined by
a density matrix � is governed by the energy spectrum of the
lattice Hamiltonian. We have

�ij�k,k�,t� = ��k
i†�t0��k�

j �t0��ei/��Ek
i −E

k�
j ��t−t0�, �1�

where we denoted with �n
k† ��n

k� the operator that creates
�annihilates� a Bloch state in the nth band with quasimomen-
tum k and energy Ek

n. In the problems of our concern, Eq. �1�
describes a statistical mixture of Bloch states in conduction
and in valence band. Since the differences of energy within
the same band are typically much smaller than the band gap
Eg, the exponential phases in Eq. �1� with i= j tend to cancel
each other. Therefore, we expect that the ith component of
the density function �ii evolves smoothly in time, while the
nondiagonal elements �ij oscillate at the frequency Eg /�.

A typical example is the time evolution of a conduction-
valence electron system in presence of a classical time-
dependent electromagnetic field. The electromagnetic inter-
action between light and electron in a semiconductor is
described by the Bloch equations �see Refs. 2 and 13 for the
details�

d�ii

dt
=

2

�
Ee−i�0tI��ij�; i = c,v; j � i ,

d�cv

dt
= −

i

�
�Ec − Ev��cv +

i

�
Ee−i�0t��cc − �vv� ,

where E is the electric field with oscillation frequency �0,
Ec �Ev� is the minimum �maximum� of the conduction �va-
lence� energy band, I denotes the imaginary part, and we
have �cv=�vc �the overbar means complex conjugation�. An
approximate solution can be obtained by writing the previous
system in integral form and applying the Markov approxima-
tion

�cv�t� = P�
−�

t

ei�Eg/�−�0�t���cc − �vv�dt�

� 2��	Eg

�
− �0
��cc − �vv� , �2�

where Eg=Ec−Ev and P denotes the principal value. We
assumed that the phase of the exponential function varies
much more rapidly than the rest of the integrand and can
then be factored out of the integral. If we now try to apply
the above procedure in the presence of a uniform and static
electric field ��0=0� as is the case of the Zener transition, the
approximation of Eq. �2� cannot be fulfilled since the gap
energy is constant and the exponential does not have any
stationary point. Nevertheless, if the assumption that the den-
sity functions �cc and �vv are a slowly varying functions of
time is not satisfied, it is possible to express �cv in the same

form of Eq. �2�. This is the case of the Zener effect where the
electrons are strongly accelerated by a static electric field and
the assumption of local equilibrium for the �ii is clearly in-
adequate. This procedure is described into detail in Sec. IV.

III. TWO BAND W-MEF MODEL

In this paper we adopt the MEF described in Ref. 8. This
model is derived within the k · p framework and is so far very
general. In particular this approach allows the description of
electron transport in devices where tunneling mechanisms
between different bands are induced by an external applied
bias U. We consider a physical model in which only the
valence and the conduction band are taken into account. Un-
der this hypothesis the MEF model is a 2�2 Schrödinger-
like set of equations

i�
�	

�t
= Ĥ	 , �3�

where

Ĥ = �Ec + U�x� −
�2

2m�

�2

�x2 −
�

m0

PKE�x�
Eg

−
�

m0

PKE�x�
Eg

Ev + U�x� +
�2

2m�

�2

�x2
� �4�

is the Hamiltonian, 	= �	c ,	v� with 	c and 	v the con-
duction and valence Wannier envelope functions. Ec �Ev� is
the minimum �maximum� of the conduction �valence� energy
band, PK is the Kane momentum, and m0 and m� are the bare
and the effective masses of the electron. U is the “external”
potential, which takes into account different effects such as
the bias voltage applied across the device, the contribution
from the doping impurities and from the self-consistent field
produced by the mobile electronic charge.

In our study we highlight the role of the multiband effects
in the electronic motion and we provide some multiband
corrections to the trajectories in the phase-space plane. For
this purpose we rescale the equations of motion by using the
following dimensionless asymptotic parameter


 =
E0PK�0

Egm0
.

Here, �0�E0� are the typical time �electric field� that charac-
terize the interband phenomena; 
 measures the strength of
the interference effect between two different bands and its
physical meaning will be discussed in detail in Sec. IV B. If
we rescale the spatial and time variables x�=x
, t�= t
, then

Eq. �3� remains unchanged but with �̃=�
 instead of �, and
Eq. �4� becomes

Ĥ = �Ec + U�x� −
�̃2

2m�

�2

�x2
PR�x�

PR�x� Ev + U�x� +
�̃2

2m�

�2

�x2 ,� , �5�

where we dropped the primes for a simpler notation and
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PR�x� = − �̃
E�x�
�0E0

. �6�

According to Ref. 5, the multiband Wigner function is de-
fined as

F�x,p,t� = 	 fcc fcv

f̄ cv fvv

 , �7�

f ij =
1

2�
�

−�

�

	̄i	x +
�

2

	 j	x −

�

2

e−i/�̃�pd� , �8�

where i , j=c ,v. This definition is a straightforward extension
of the single-band Wigner function to a multiband system. In
the absence of electric fields, the definition of the diagonal
components of the multiband Wigner function, fcc and fvv,
agrees with the definition of the single-band Wigner function
of electrons in conduction and valence bands, respectively.
However, in the presence of a very strong electric field, the
identification of fcc and fvv is not straightforward because of
the coupling between the electron wave functions in the con-
duction and in the valence bands.

The evolution equation for the multiband Wigner function

up to the first order in �̃ read as:10

� fcc

�t
= −

p

m�

� fcc

�x
+ E�x�

� fcc

�p
+ F+,

� fvv

�t
=

p

m�

� fvv

�x
+ E�x�

� fvv

�p
− F−,

� fcv
r

�t
= −

2

�̃

fcv

i + E�x�
� fcv

r

�p
+

�̃

�0E0

dE
dx

��fcc + fvv�
�p

, �9�

� fcv
i

�t
=

2

�̃

fcv

r + E�x�
� fcv

i

�p
+

E�x�
�0E0

�fcc − fvv� ,

where fcv
i =2I�fcv�, fcv

r =2R�fvc�. I�R� denotes the imagi-
nary �real� part and

F� =
2

�0E0

− E�x�fcv

i � �̃
dE
dx

� fcv
r

�p
� ,


�p� =
Eg

2
+

p2

2m�
.

The multiband Wigner system �9� exhibits a very complex
dynamics, which is the source of many difficulties in the
numerical approach. To overcome this difficulty a different
approach based on the Weyl quantization procedure is pro-

posed. Given a differential operator Â acting on the x vari-
able, the Weyl quantization procedure establishes a unique

correspondence between Â and a function A�x , p�, which is
the symbol of the operator. Formally we can define the Weyl

operator such as W�A�x , p��=Â. In particular, if h is a dif-
ferentiable function we have

�Âh��x� = W�A�x,p��h

=
1

2��̃
� A	 x + y

2
,p
h�y�ei/�̃�x−y�pdydp . �10�

In the framework of the Weyl quantization procedure, a ge-

nerical mixed state is defined by its density operator Ŝ�

Ŝ��h� =� ���x,x��h�x��dx�

whose kernel is the density matrix

���x,x�� = �
i,j

�ij�i�x�� j
t�x�� .

Here �ij are given coefficients, �i is an orthonormal set of
basis functions, and the superscript t denotes the transposi-

tion. The Weyl symbol S�=W−1�Ŝ�� is obtained by applying
the Wigner transformation to the function ���x ,x��

S��x,p� = f��x,p� =
1

2�
� ��	x +

�

2
,x� −

�

2

e−i/�̃p�d� .

The matrix �,

� =
1
�2
	 �1 + � �1 − �

− �1 − � �1 + �

 ,

� =



�PR
2 + 
2

, �11�

diagonalizes the hamiltonian symbol

H = W−1�Ĥ� = 
U�x� + 
�p� PR�x�
PR�x� U�x� − 
�p� ,

� �12�

where Ĥ is defined in Eq. �5�. We derive the multiband
Wigner-MEF system related to the set of wave function �

=�̂�. � can de interpreted as a new set of basis functions

defined by the rotation operator �̂. In the “rotated frame” the

density operator Ŝ� is

Ŝ� = �̂Ŝ��̂†, �13�

where �̂† denotes the dual operator of �. By using the prop-
erty

W−1�ÂB̂� = �W−1�Â�� # �W−1�B̂��

we derive the relationship between f� �the symbol of Ŝ�� and
f�

f� = � # f� # �t, �14�

where # denotes the Moyal product. The Heisenberg evolu-

tion equation for the density operator Ŝ� is
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i�̃
�Ŝ�

�t
= �Ĥ,Ŝ�� , �15�

where the square brackets denote commutation. Applying the
Weyl operator to the previous equation we obtain the evolu-
tion equation for f��x , p�. We have

i�̃
� f�

�t
= �H�, f��# + o��̃� , �16�

where H�=�#H#�t and we have used

� # f� # �−1̃ = � # f� # �t + o��̃� = f� + o��̃� .

Here �−1̃ denotes the symbol of �̂−1. The previous equation
can be verified by noting that

��−1̃ − �t� # � = o��̃�

and

�−1̃�x,p� = �t�x,p� + o��̃� , �17�

which follow from the expansion of the Moyal product with

respect to �̃

A # B = �
k=0

�
�̃k

�2i�k �
���+���=k

�− 1����

� ! �!
��x

��p
�A���p

��x
�B� .

Up to the first order in �̃, H� becomes

H� = 	H+
− i�̃�

i�̃� H−,



where

��x,p� = E PR

PR
2 + 
2

p

m�
, �18�

H� = � �PR
2 + 
2 + U�x� , �19�

and Eq. �16� gives

i�̃
� f�

�t
= �H�, f�� +

�̃

2i
� �H�

�p
,
� f�

�x
� −

�̃

2i
� �H�

�x
,
� f�

�p
� + o��̃� ,

�20�

where the square and curly brackets denote, respectively, the
standard commutation and the anticommutation operators.
The previous equation gives explicitly

�hc

�t
= −

�H+

�p

�hc

�x
+

�H+

�x

�hc

�p
− 2�R�hcv� , �21�

�hv

�t
= −

�H−

�p

�hv

�x
+

�H−

�x

�hv

�p
+ 2�R�hcv� , �22�

�hcv

�t
= − i

2

�̃

�PR
2 + 
2hcv + E�hcv

�p
+ ��hc − hv� . �23�

Here, to ease notation, we have defined �hc ,hv ,hcv�
= �f�cc

, f�vv
, f�cv

�. Since the functions hc and hv �intraband
distribution functions� are the diagonal components of the
Wigner multiband function in the basis �, where the k · p

Hamiltonian is diagonal �up to the first order in �̃�, they
represent the effective distribution functions of particles in a
regime of strong band-to-band coupling. The system of Eqs.

�21�–�23� shows that up to zero order in �̃, the Wigner func-
tions hc and hv follow the Hamiltonian flux generated by
H�. The eigenvalues of the Hamiltonian operator thus pro-
vide the multiband quantum correction to the classical
single-band Hamiltonian Hsb=U�x�+ p2

2m� . We remark that the
diagonalization procedure of the Hamiltonian symbol H
which characterizes our approach to the Multiband Wigner
dynamics, strongly reduces the coupling among the inter-
band and the intraband multiband functions compared with
respect to the original formulation of Eq. �9�. In fact in the
presence of a strong electric field the coupling parameter �
approaches the asymptotic value ��=limE→� ��� whereas
the coupling term F� in Eq. �9� goes to infinity. Furthermore
the diagonal term i�PR

2 +
2 in Eq. �23� induces a fast-in-
time oscillation of hcv �whose frequency is on the order of

Eg /�� which, up to zero order in �̃, decouples hcv from the
slowly varying intraband functions hc and hv. As pointed out
in the Sec. II, within the standard approximation of the ro-
tating phases, no coupling between the fast and the slow
rotating components of the solution is retained and the tran-
sition phenomena cannot be taken into account. A more ac-
curate approximation is thus required to model the interband
tunneling processes.

The procedure outlined in this section is quite general.
The matrix ��x , p� diagonalizes �in the x-p space� the sym-
bol of the multiband Hamiltonian operator and defines a ro-
tation in the Hilbert space spanned by the band degree of

freedom. The operator �̂=W���x , p�� can be used to define
a new set of Wigner functions. This set of multiband Wigner
functions evolve according to a Liouville-type system of
equation and each component follows the Hamiltonian flux
generated by the eigenvalues of the original Hamiltonian.

In Appendix B we give an alternative derivation of the
system of Eqs. �21�–�23� based on a direct diagonalization of
the original system of Eq. �9�.

IV. W-MEF SYSTEM

We present some numerical result obtained by solving the
W-MEF system of Eqs. �21�–�23�. The numerical code is
based on the splitting scheme algorithm described in Ref. 10.
As an application of the multiband Wigner model we con-
sider a simple interband diode consisting of a homogeneous
semiconductor where a uniform electric field E is applied in
the domain �−w ,w�. As initial datum we choose a vanishing
function, and for boundary condition the function
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�hc�p� = e−�p − p0�2/KBTm�
for p � 0

hi�p� = 0 otherwise, i = c,v,cv ,
�

�24�

where KB is the Boltzmann constant. Equation �24� describes
a flux of conduction electrons injected into the diode with a
positive mean momentum and Gaussian dispersion �see Fig.
1�. In our simulation, we used the following parameters:
Eg=Ec−Ev=0.16 eV, m�=0.023m0, PK /�=5 nm−1, p0 /�
=1.8 nm−1, E=5�10−3 eV nm−1, w=2 nm, and T=300 K.
The results of the simulation show that the conduction elec-
tron beam, described by the function hc, is reflected back by
the potential barrier. Besides, the gradient of the potential
couples conduction and valence electrons, and the hv com-
ponent �representing the part of the electrons in valence
band� grows giving rise to a nonvanishing flux of electrons
traveling outside the diode. In Fig. 2 we show the contour
plot of the same function of Fig. 1.

A. Single-band limit

We explore the single-band limit of Eqs. �21�–�23�. If the
electric field �band gap� goes to zero �infinity�, the nondiago-
nal terms of the Hamiltonian of Eq. �4� vanish and the dy-
namics of the electrons in the conduction band is decoupled
from those of the valence band. We define the parameter �

=
PR


 which is vanishing in the single-band limits �E ,1 /Eg�
→0 and we determine the correction to the single-band

Wigner dynamics. By expanding Eq. �14� with respect to �
we obtain

hc = fcc�1 + �2� + I�fcv�� + fvv�2 + o��2� , �25�

hv = fvv�1 + �2� − I�fcv�� + fcc�
2 + o��2� , �26�

hcv = fcv�1 − �2� + o��2� . �27�

In the single-band limit, the new multiband Wigner function
H= �

hc hcv

h̄cv hv
� agrees with the original variables F defined in Eq.

�7�, as expected. This limit defines the correct initial and
boundary conditions for the system of Eqs. �21�–�23�. In
fact, to model semiconductor structures, it is convenient to
prescribe nonvanishing initial conditions only in the regions
where the electric field is negligible �and where H�F�. Con-
sistently with the Wigner formalism, here the Wigner distri-
bution function can be approximated with the classical dis-
tribution function �these initial conditions are used when the
initial quantum correlation of the particles can be
neglected14�. For hcv the classical limit �→0 gives

lim
�→0

hcv = 0.

This limit is consistent with the assumption that hvc repre-
sents the quantum correlation between the conduction and
the valence eigenspaces, which has not a classical counter-
part.
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FIG. 1. �Color online� Snapshot of hc and hv functions for t=50 fs �up panel� and t=100 fs �down panel�.
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B. Multiband correction to the classical single-band motion

Usually, the classical limit of a single-particle quantum
system is obtained by expanding the Wigner equation of mo-
tion with respect to �.15 The evolution equation of the
Wigner function �to all orders in �� in presence of the single-
band Hamiltonian Hsb=U�x�− �2

2m�

�2

�x2 is

� f

�t
= −

p

m�

� f

�x
+ ��f �, �28�

��f� =
i

2��m�� �U�x,��ei�p−p̄��/m�
f�x, p̄�d�dp̄ , �29�

where �U�x ,��=U�x+ �

2m� ��−U�x− �

2m� ��. Here the Wigner
function f is defined in same way as in Eq. �8� with i= j and

with � instead of �̃. The � operator admits the following �
expansion

��f� = �
�

1

�2� + 1�!	 �

2i

2�d2�+1U

dx2�+1

�2�+1f

�p2�+1 . �30�

In the classical regime only the term �=0 is retained and �
reduces to the force operator E�x� �

�p . From Eq. �30� it is
evident that the motion becomes classical when the deriva-
tives of the electric field are small. We remark that in pres-
ence of a uniform electric field E�x�=E, the Wigner equation
reduces exactly to the classical Liouville equation indepen-

dently of the strength of the field. This consideration suggest
us that it is possible to approximate the electronic motion by
the classical evolution equation whenever the electric field
can be considered approximatively constant in a given spa-
tial domain D. Attention has to be payed to the fact that the
� operator is a highly nonlocal-in-space operator �as is evi-
dent from Eq. �29�� and a strong gradient of the electric field
located well faraway to D can affect the motion of the par-
ticles inside D �see, for example, Refs. 16 and 17 where the
higher-order terms are retained in the description of the
Wigner equation of motion in the presence of an electromag-
netic field�. In Fig. 3 we compare the solution of the quantum
Wigner equation with respect the classical counterpart for
increasing electric fields. The profile of the electric field is
plotted in Fig. 3�e�. In Figs. 3�a�–3�d� we show the contour
plot of the stationary state of Eq. �28� in the domain �0,L�.
At the interfaces we model an incoming thermal distribution
of particles in x=0 by using the following boundary condi-
tions:

f�x = 0,p � 0� =
m�

�KBT

��2 ln�1 + e−1/KBT�p2/2m�+Ec−���,

f�x = L,p � 0� = 0,

where KB is the Boltzmann constant and T is the temperature
of the particles.
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FIG. 2. �Color online� Contour plot of the hc and hv functions. The region with nonvanishing electric field is bounded by the horizontal
lines.
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In Fig. 3�f� we plot the quantity

e =��
0

L �
−�

�

�f − fcl�2dpdx

�
0

L �
−�

�

�f �2dpdx

,

where fcl is the solution of the classical evolution equation,
as a function of the maximum value of the eternal electric
field EM. e is the error done if we approximate the single-
band quantum system by its classical limit. Our simulations
show that for an electric field on the order of 5
�10−3 eV nm−1 �which is, for example, the typical electric

field attained in a usual semiconductor device as a metal-
oxide semiconductor� the two solutions are practically iden-
tical. Now we consider the corrections to the motion arising
from the multiband Hamiltonian of Eq. �5�. It is immediate
to verify that in the single-band limit the coupling coefficient
� vanishes and the system �21�–�23� decouples. Thus the
evolution is described by two Liouville equation �one for
each band� with Hamiltonian

H� = � �PR
2 + 
2 + U�x�

= �
p2

2m�
+ U�x� �

Eg

2
	1 +




Eg
�2
 + o��2� . �31�
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FIG. 3. �Color online� �a�–�d�: Contour plots of the solution of Eq. �28� �solid line� compared with the classical solution �dashed line� for
different values of the maximum of the electric field EM: �a� EM =10−3 eV nm−1, �b� EM =5�10−3 eV nm−1, �c� EM =10−2 eV nm−1, and �d�
EM =5�10−2 eV nm−1. �e� Electric field used in the simulation normalized with respect the maximum EM. �f� Plot of the error parameter e
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The zero order is the classical single-band Hamiltonian. In
our procedure � is the parameter which measures the
strength of the band-to-band coupling: in Table I we report
the value of � 
�2

Eg
�p=0=

�PKE
Eg

2m0
for various semiconductors. We

see that for an electric field E on the order of 5
�10−3 eV nm−1 �where according to Fig. 3�f� the single-
band dynamics is essentially local-in-space� the last term in
Eq. �31� gives some non-negligible corrections to the single-
band Hamiltonian in materials such as InSb or InAs. We
conclude that it is possible to have multiband quantum cor-
rection to the single-band trajectories even if the electric field
is so small that the nonlocal quantum effect can be consid-
ered negligible. From a mathematical point of view, our ex-
pansion procedure is defined with respect to the asymptotical

parameter �̃=
�, and the range of its application is in the

limit �→0 and 
→� while �̃ is kept fixed. The Hamiltonian
flux of H+ �similar results can be obtained with H−� is

ẋ =
�H+

�p
=

1

�1 + � PR


 �2

p

m�

ṗ = −
�H+

�x
= − E −

1

�1 + � 

PR

�2

�PK

m0Eg

dE
dx

.

�32�

In Fig. 4 we compare the single-band trajectory with the
quantum-corrected trajectory for InAs by using the same pa-
rameter of Fig. 3�a�. It is worth noting that the multiband
trajectory shows a small penetration in the region with the
repulsive potential with respect to the single-band case. This

is mainly due to the term �1+ �
PR


 �2 in Eq. �32� which mul-
tiplies the effective mass of the particle. The particle thus
moves with a larger effective mass, i.e., a function of the
classical position and momentum. This effect partially com-
pensates the reduction in the mass in semiconductors with a
small band gap like InAs or InSb.

Comparing Eq. �28� with the first-order differential Eqs.
�21�–�23�, we see that the first-order W-MEF hierarchy dis-
cards the quantum interference effects between the particles
inside each band. These intraband interference effects are
expressed by the higher order terms of the � expansion of �
and give rise to the typical oscillations of the Wigner func-
tion. According to the discussion of Sec. II, we preserve only
the band-to-band higher frequencies interference effects
�which are on the order of Eg /��. This strong quantum os-
cillation regime is used in Sec. IV C to efficiently decouple
the interband dynamics represented by hcv with respect to the
smooth-in-time intraband dynamics represented by hc and hv.

C. Interband transition

Because of the coupling among the intraband functions hc
and hv and the real part of hcv �see Eqs. �21� and �22��,
interband transition can occur. In this section we will de-
scribe the transition processes where the electrons are scat-
tered from the conduction band to the valence band. The
same considerations apply for the inverse transition. For the
sake of simplicity we assume that for t= t0 only the conduc-
tion band is populated, so that we have the following initial
condition for the multiband Wigner function

hi = �hc
I�x,p� i = c

0 i = v,cv .
�

The integral solutions of the intraband evolution Eqs. �21�
and �22� and of the interband evolution Eq. �23� are formally
given by

hcv�x,p,t�� = �
t0

t�
��x, p̃�t� − t���h−�x, p̃�t� − t��,t��

�ei�
t�
t�Hcv�x,p̃�t�−���d�dt�, �33�

hc�x�,p�,t� = hc
I�x�,p�� − 2R��

t0

t

��x̃c�t��, p̃c�t���

�hcv�x̃c�t��, p̃c�t��,t��dt�� , �34�

where � is given by Eq. �18� and

Hcv�x,p� =
2

�̃

�PR
2�x� + 
2�p� ,

h− = hc − hv,

p̃��� = p̃�x,p,�� = p + E�x�� .

Equation �33� can be derived introducing the auxiliary func-
tion g�x , p , t�=hcv�x , p−Et , t� in Eq. �23�. We obtain

�g

�t
= − iHcv�x,p − Et�g + ��x,p − Et�h−.

In Eq. �34� we have defined the following Hamiltonian flux
�x̃c , p̃c�

TABLE I. Numerical value of the parameters used in the single-
band limits. Here EM =5�10−3 eV nm−1.

�GaAs Ge GaSb InAs InSb
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�2
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�p=0 8�10−5 7.5�10−4 1.1�10−3 1.4�10−2 2.2�10−1
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FIG. 4. �Color online� Pseudocharacteristic �continuous lines�
compared with the classical characteristic �dashed lines�.
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� x̃c

�t
=

�H+

�p
�x̃c, p̃c�; x̃c�t0� = x�

� p̃c

�t
= −

�H+

�x
�x̃c, p̃c�; p̃c�t0� = p�.

Inserting Eq. �33� in Eq. �34� we obtain

hc�x�,p�,t� = hc
I�x�,p�� − R��

DT,�

F�T + �,T − ��

�ei��T+�,T−��dTd�� , �35�

where the integration domain DT,� is

DT,� = �T � t; � � 0

T � t; � � T − t
�

and

��t�,t�� = �
t�

t�
Hcv�x̃c�t��, p̃i�t�,���d� ,

p̃i�t1,t2� = p̃�x̃c�t1�, p̃c�t1�,t2� ,

F�t�,t�� = 2��x̃c�t��, p̃c�t�����x̃c�t��, p̃i�t�,t���

� h−�x̃c�t��, p̃i�t�,t��,t�� .

Due to the presence of the highly oscillating function ei� we
can apply the stationary phases approximation to evaluate
the integral of Eq. �35�. The stationary points are defined by

��

�T
=

��

��
= 0. �36�

To solve Eq. �36�, we approximate the profile of the electric
field with a constant field E=E�x0� in the neighborhood of
the coordinate x0 where the transition takes place. Since ��

��
�Eg, Eq. �36� cannot be satisfied and the stationary point is
reached when18

��

�T
= Hcv�p1� − Hcv�p2� = 0,

�2�

��2 = E	� �Hcv

�p �
p=p2

− � �Hcv

�p �
p=p1


 = 0

with p1= p�−E�T+�− t0� and p2= p�−E�T−�− t0�. The solu-
tions are

T = t0 +
p�

E
,

� = 0.

The stationary point thus coincides with the turning point of
the x characteristic �that is its intersection with the axis p
=0�. More generally, for an x dependent electric field, the
exponential term gives a nonvanishing contribution to the

integral of Eq. �35� only when p̃c�T�=0 and the particle is at
rest. To estimate the integral of Eq. �35� we neglect the tem-
poral evolution of h−, and we obtain the following Markov-
type approximation of the interband tunneling processes

hc�x�,p�,t� � hc
I�x�,p��

− h−�x̃c�x�,p�,t��, p̃c�x�,p�,t��,t��T��t� ,

�37�

where for t= t� we have p̃c�x� , p� , t��=0 and

T��t� = R�
DT,�

F̃�T + �,T − ��ei��T+�,T−��dTd� ,

F̃�t1,t2� = 2��x̃c�t1�, p̃c�t1����x̃c�t1�, p̃i�t1,t2�� .

T� represents the interband probability transition and de-
pends only from the electric field E�x�. T� can be approxi-
mated by �the detail of the calculations are given in Appen-
dix A�

T��t� � �H�p̃c�x�,p�,t��Tcv�x� ,

where �H is the step function and Tcv is given by

Tcv = �1
2 �2

2�3 D2
Ai2	C − H1

�3 D

 . �38�

The effective equation of motion for the Wigner functions hc,
hv can be obtained by differentiating with respect to the time
Eq. �37� and coming back to the �x , p� variables by inverting
the system

� x̃c�x�,p�,t� = x

p̃c�x�,p�,t� = p .
� �39�

The final result is

�hc

�t
= −

�H+

�p

�hc

�x
+

�H+

�x

�hc

�p
− �hc − hv���p�E�x�Tcv�x� .

Applying the same procedure to the hv function we obtain
the final Zener Boltzmann-type system

�hc

�t
= −

�H+

�p

�hc

�x
+

�H+

�x

�hc

�p
+ � �hc

�t
�

Z

�hv

�t
=

�H−

�p

�hv

�x
+

�H−

�x

�h−

�p
+ � �hv

�t
�

Z

,

�40�

where

� �hv

�t
�

Z

= − � �hc

�t
�

Z

=�W�p,p���hc�p�� − hv�p���dp�,

W�p,p�� = TcvE�x���p���p�� .

This formulation reveals that the effect of the interband tran-
sition is taken into account as an effective scattering process
that occurs when the particle is at rest.
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V. CONCLUSION

In this paper we have developed a model for the descrip-
tion of the Zener transition in a semiconductor by using the
Wigner-function approach. We demonstrate the existence of
physical regimes where the main quantum corrections to the
classical motion are the deformation of the characteristics
and the interband tunneling. These results are derived in a
full quantum contest and the expansion procedure is intended
to preserve the classical description of the motion. A suitable
diagonalization procedure in the Weyl quantization frame-
work is proposed and a new set of Wigner multiband func-
tions are defined. We have introduced an approximate solu-
tion in closed form based on an iterative expansion which
allows for a clear and intuitive physical picture of the inter-
band transition process, leading to an analogy with electron
scattering processes in semiconductors. We discussed the
range of applicability of the expansion procedure which is at
the basis of the evolution system of Eqs. �21�–�23�, and its
relationship with the usual single-band expansion, based on
the Planck constant �. The single-band limit has been dis-
cussed and some quantum correction to the single-band tra-
jectory has been obtained. We showed that the solution is
characterized by the presence of two different regimes: the
fast processes arising form band-to-band oscillation �intra-
band motion�, and whose frequency is the order of the band
gap; and the slow dynamical processes that determine the
intraband motion of the particle in term of the Hamiltonian
characteristic flux of the particles. The coupling between the
intraband and the interband components of the solution only
occurs when the particle crosses the p=0 axis. One of the
main advantages of our diagonalization procedure is the pos-
sibility to separate the fast evolving components of the solu-
tion from the slow dynamics, which were mixed in the origi-
nal formulation.
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APPENDIX A: THE TRANSITION RATE T�(t)

In this section we will evaluate the integral

T��t� = lim
t→�

T�− �,t� ,

T�t0,t� = R��
t0

t

g�t���
t0

t�
f�t��dt�dt�� , �A1�

with

f̄ = g = ��t�ei�
t�
t

����d�, �A2�

where

���� =
2

�̃

�PR
2�x0� + 
2�p̃���� �A3�

with d�
dt �t��=0 and � is given in Eq. �18�. By using the stan-

dard properties of the Fourier transform we have

T� = 2�2� �
n=−N

N

�̃n exp i	�
t�

t

����d� + Hnt
�2

, �A4�

where we have expanded � in Fourier series in a convenient
interval �−J0 ,J0�

��t� = �
n=−N

N

�̃n eiHnt; Hn = n
�

J0
.

To get an analytical approximation of the previous formula it
is convenient to approximate

�
t�

t

����d� � Ct + D
t3

3
, �A5�

where the coefficients in the right-hand side can be obtained
by a least-square fitting approximation

D =
45

8�t� + t0�5�
t�−t0

t�+t0 	��2 −
�t� + t0�2

3
�
d� , �A6�

C =
1

2�t� + t0��t�−t0

t�+t0
�d� −

�t� + t0�2

3
D . �A7�

To estimate t0 we note that when �t�
t�����d� grows, the expo-

nential in Eq. �A1� gives a vanishing contribution the inte-
gral. Expanding � around its minimum ��t�� we obtain

��t� � ��t�� + �̈�t��
�t − t��2

2
.

We define a fitting parameter ��1 such as for t= t�+ t0 we
have

��t� + t0�
��t��

= �

and we obtain t0

t0 = t� + �
�4PR

2 + Eg
2�m�

4E3Eg
.

Equation �A4� becomes

T� = 2�2� �
n=−N

N

�̃n
1

�3 D
Ai	C + Hn

�3 D

�2

�A8�

where Ai is the Airy function

2�

�3 B
Ai	 A

�3 B
 = �
−�

�

ei�At+B/3t3�dt . �A9�

Finally, if we approximate � with a single oscillating func-
tion we obtain

��t� =
E2

m�

PR

PR
2 + 
2�E2�t − t���

�t − t��

� �̃ = �1 sin�H1�t − t���ei�At+B/3t3�dt , �A10�

where
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�̇�J0/2� = �̇̃�J0/2� = 0

�

J0
= H1 = 2�� Eg

2m�

E

PR
2 + 	Eg

2

2

�1 = ��J0/2� .

In Fig. 5 we compare the exact values of T� obtained by
direct numerical integration of Eq. �A1�, with the single har-
monic approximation of Eq. �38�, for different values of the
Kane parameter PK and the electric field E.

APPENDIX B: DERIVATION OF THE W-MEF SYSTEM

In Sec. III we presented a diagonalization procedure
which transform the system of Eq. �9� into the system of Eqs.
�21�–�23� and we defined the new set of multiband functions
hc, hv, and hcv. The derivation was based on the Weyl quan-
tization framework and we exploited the properties of the
Moyal product to obtain the Wigner multiband evolution
equation in a rather simple way, avoiding cumbersome cal-
culations. In this appendix we derive the same results by
using an alternative approach based on the operator mechan-
ics framework.

We write Eq. �9� in the compact form

�f

�t
= 	A0 + �̃Ax

�

�x
+ �̃Ap

�

�p

f , �B1�

where f= �fcc+ fvv ; fcc− fvv ; fcv
i ; fcv

r �t and

A0 =�
0 0 0 0

0 0 − PR 0

0 PR 0 


0 0 − 
 0
� ; Ap =�

E 0 0
dPR

dx

0 E 0 0

0 0 E 0

dPR

dx
0 0 E

�;

�Ax�i,j = −
p

m�
��i,1� j,2 + � j,1�i,2� ,

We search for a new set of pseudodistribution functions,
for which the zeroth-order dynamics is diagonal. In order to
illustrate our diagonalization procedure, we consider the
oversimplified case where the electric field vanishes and thus
the Ap operator is identically zero. The Eq. �B1� simplifies

�f

�t
= 	A0 + �̃Ax

�

�x

f .

We apply the Fourier transform with respect the x variable
and we obtain

� f̂

�t
= �A0 + i�̃�Ax�f̂ , �B2�

where f̂��� is the Fourier transform of f�x�. We denote with

��� , p� the matrix which diagonalize A0+ i�̃�Ax

�−1�A0 + i�̃�Ax�� = ���,p� . �B3�

In term of the new variable ĥ=�−1f̂ the Eq. �B2� becomes

�ĥ

�t
= ���,p�ĥ . �B4�

By Fourier antitransforming we recover the equation of mo-
tion in the spatial variable x. In particular, to each term of the
� expansion of the matrix ��� , p� corresponds a differential
operator in the x space of the same order. Furthermore, from
the definition of ��� , p� in Eq. �B3�, it is evident that �

depends on � via �̃� and thus an expansion of � with re-

spect to � is equivalent to an expansion with respect �̃.
Semiclassical approximations of the Wigner-MEF system
arise when the transport equation for h has the same struc-
ture of the Liouville equation, which is a first-order differen-
tial equation with respect to the kinetic variables x and p. It
is thus sufficient to expand ��� , p� up to the first order with

respect to �̃ in Eq. �B4� and Fourier transform to obtain the
evolution equation in the x space

�h

�t
= 
��0,p� + � ��

��
�

�=0

�

�x
+ o��̃��h�x� .

The relationship between h and the original variable f is
obtained by expanding the � operator up to the first order in
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FIG. 5. �Color online� Estimation of the error in the approximation of T�. Left panel: exact �dashed blue line� and approximated
�continuous green line� values of T� for different values of PK. Right panel: exact �dashed blue line� and approximated �continuous green
line� values of T� for different values of the electric field E.
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�. This procedure can be extended to the general case of a
x-dependent electric field E�x� in following way: we gener-
alize Eq. �B3� defining the following operator acting on f

�f = 
�0 + �̃	�1 + �x
�

�x
+ �p

�

�p

�f = h , �B5�

where the � operators defined in the previous formula are
4�4 matrices on the x and p variables. We choose � such as

�−1	A0 + �̃Ax
�

�x
+ �̃Ap

�

�p

� = � + �̃T . �B6�

T is a matrix representing the first-order contribution to the
transition, which will be evaluated in the following:

��x , �̃ �
�x � is a diagonal matrix of pseudodifferential operators

�i.e., each element of � is a differential operator acting on h
and admitting a �̃ expansion�. Thus

�i,j	x,p,�̃
�

�x
,�̃

�

�p



= �ij�
i	x,p,�̃

�

�x
,�̃

�

�p



= �ij �
n=0;�m��n

�

�̃n	�n,xm
i �x,p�

�m

�xm + �n,pm
i �x,p�

�m

�pm

= �ij
�0

i + �̃	�0
i �x� + �x

i �

�x
+ �p

i �

�p

� + o��̃� , �B7�

where for simplicity �0
i �x , p�=�0,0

i and we suppressed the n
index in the other terms. We evaluate the matrix �, in order

to satisfy Eq. �B6� up to the first order in �̃. We define by uk

the column vector operator equal to the kth column of �
�i.e., ui

k=�i,k, where the i index denotes the ith component
of the vector uk� and we multiply Eq. �B6� with � from the
left. We obtain


A0�x� + �̃Ax
�

�x
+ �̃Ap

�

�p
�uk = uk�k + �̃�

j

u jTj,k,

�B8�

where, according to the �̃ expansion of �, uk is given by

uk	x,p,
�

�x
,

�

�p

 = u0

k�x,p� + �̃
v0
k�x,p�

+ vx
k�x,p�

�

�x
+ vp

k�x,p�
�

�p
�

The zeroth order of Eq. �B8� is

A0�x,p�u0
k = �0

ku0
k

and the u0
k are the eigenvectors of the zeroth-order operator

A0. Here the x and p variables act just like a parameter. We
calculate the first order of Eq. �B8� and we multiply from the
left by u0

r†, where † denotes the algebraic conjugation. We
obtain

��̄0
r − �0

k��u0
r ,v


k� = �r,k�

k − u0

r†A
u0
k 
 = x,p �B9�

��̄0
r − �0

k��u0
r ,v0

k� = �r,k�0
k − u0

r†	Ax

�u0
k

�x
− vx

k��0
k

�x

+ Ap

�u0
k

�p
− vp

k ��0
k

�p

 + Tr,k, �B10�

where �,� denotes the ordinary scalar product �a ,b�=a†b.
Finally to determine the unknown uk up to the first order, we
expand vk on the u0

k basis

v

k = �

k

�u0
n,v


k�u0
k ; 
 = 0,x,p

and the expansion coefficients can be found from Eqs. �B9�.
After some algebra, we obtain the equation of motion for h
=�f �see Eq. �B6��, which agrees with the Wigner-MEF sys-
tem given in Eqs. �21�–�23�.

*morandi@dipmat.univpm.it
1 G. Bastard, Wave Mechanics Applied to Semiconductor Hetero-

structures �Les Editions de Physique, Paris, 1988�.
2 H. Haug and S. W. Koch, Quantum Kinetics in Transport and

Optic of Semiconductor, Springer Series in Solid-State Sciences
�World Scientific, Singapore, 1996�.

3 L. Demeio, P. Bordone, and C. Jacoboni, Transp. Theory Stat.
Phys. 34, 1 �2006�.

4 M. B. Unlu, B. Rosen, H.-L. Cui, and P. Zhao, Phys. Lett. A
327, 230 �2004�.

5 G. Borgioli, G. Frosali, and P. Zweifel, Transp. Theory Stat.
Phys. 32, 347 �2003�.

6 E. O. Kane, J. Phys. Chem. Solids 1, 82 �1956�.
7 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 �1955�.
8 O. Morandi and M. Modugno, Phys. Rev. B 71, 235331 �2005�.
9 G. Ali, G. Frosali, and O. Morandi, Comput. Electr. Eng. 9, 271

�2004�.
10 G. Frosali and O. Morandi, Transp. Theory Stat. Phys. 36, 159

�2007�.
11 O. Morandi and L. Demeio, Transp. Theory Stat. Phys. 37, 437

�2008�.
12 W. T. Wenckebach, Essential of Semiconductor Physics �Wiley,

Chichester, 1999�.
13 T. Kuhn and F. Rossi, Phys. Rev. B 46, 7496 �1992�.
14 W. R. Frensley, Rev. Mod. Phys. 62, 745 �1990�.
15 N. Ben Abdallah, P. Degond, and P. A. Markowich, ZAMP 48,

135 �1997�.
16 M. Levanda and V. Fleurov, Ann. Phys. �N.Y.� 292, 199 �2001�.
17 M. Levanda and V. Fleurov, J. Phys.: Condens. Matter 14,

13727 �2002�.
18 D. Robert, Autour de l’Approximation SemiClassique

�Birkhäuser, Boston, 1987�.

OMAR MORANDI PHYSICAL REVIEW B 80, 024301 �2009�

024301-12


